
GigEConnect SDK

Sample Grabbing Code

Walkthrough

Prerequisites

• In order to compile and link your
application, you’ll need the following items:

– GenTL include files (Include Client.h)

– TLI.lib import library to link against

– TLI.dll grabber DLL

– GenAPI includes and header files

Function return value

• Every library function returns a status of type

GC_ERROR, which indicates whether it

completed successfully. In the case of success,

the code returned is GC_ERR_SUCCESS (0)

• Any other return value indicates some sort of

failure during the function processing.

• In this walkthrough, we use the local variable gc

defined as follows:

GC_ERROR gc;

Namespaces

• Following the GenICam model, the library
defines several namespaces where all functions,
variables and data types are defined.

• For the sake of this walkthrough, we do not use
namespace prefixes, but instead use the
following code immediately following the
#include directive(s):

using namespace GenICam;

using namespace GenICam::Client;

using namespace GenApi;

Opening the library

• In order to open the library, your code
must call TLOpen().

• The sole parameter is a pointer to variable
that will hold a handle to the library.

• The code:

TL_HANDLE hTL;

gc = TLOpen(&hTL);

Enumerating interfaces

• The first step is to get the number of
interfaces available. This is achieved by
calling TLGetNumInterfaces():

uint32_t num_ifaces;

gc = TLGetNumInterfaces(hTL, &num_ifaces);

Enumerating interfaces

• Next step is getting an interface name
through the call to TLGetInterfaceName():

char iface_name[256];

size_t cb = sizeof(iface_name);

gc = TLGetInterfaceName(hTL, 0, iface_name, &cb);

Please note that we want to get the name
of interface 0 (the first one).

Opening interface

• To open an interface, we call
TLOpenInterface() specifying the handle to
the library and the interface name

INTERFACE_HANDLE hIF;

gc = TLOpenInterface(hTL, iface_name, &hIF);

Enumerating devices

• Enumerating devices on an interface is
pretty much like enumerating interfaces.
First we call TLGetNumDevices():

uint32_t num_devices;

gc = TLGetNumDevices(hIF, &num_devices);

Enumerating devices

• Next, we get the name of a device with
specified index (0 in our case) by calling
TLGetDeviceName():

char dev_name[256];

gc = TLGetDeviceName(hIF, 0, dev_name,
sizeof(dev_name));

Opening device

• After getting both the interface and the
device names, we are ready to open the
device. This is done through a call to
TLOpenDevice() as illustrated below:

DEV_HANDLE hDev;

gc = TLOpenDevice(hIF, device_name, &hDev);

Accessing device registers

• The device is controlled by the means of
writing its registers.

• Getting device parameters involves
reading its registers.

• In order to achieve device independence
as well as make the access much less
cumbersome, the access is performed
through string register names as opposed
to numeric register addresses.

Accessing device registers

• The library supplies two functions to read/write
device registers: GCReadData() and
GCWriteData().

• These functions are a part of the low-level
interface and consequently expect specifying
register addresses.

• However we don’t use these functions directly,
but instead work with GenAPI library, which will
effectively translate string names to the
addresses corresponding to these registers.

Accessing device registers

• To access device registers, GenAPI library
requires two things:

– User-created port object, whose methods will

be called by GenAPI to perform actual data

transfer by calling GCReadData() and

GCWriteData()

– Register description XML file

Accessing device registers

• First, we create a port object that will be
called by GenAPI to perform actual
register I/O. We declare a class that
implements IPort interface and implements
its methods Read() and Write().

• The class is declared as follows:

Acessing device registers

class MyPort: public IPort
{
public:

MyPort(DEV_HANDLE hDev):

m_hDev(hDev)

{
};

protected:

virtual void Read(void *pBuffer, int64_t Address, int64_t Length)
{

if(GC_ERR_SUCCESS != GCReadData(m_hDev, Address, pBuffer, (size_t*)&Length))
throw ACCESS_EXCEPTION("Failure reading device data");

};

virtual void Write(const void *pBuffer, int64_t Address, int64_t Length)
{

if(GC_ERR_SUCCESS != GCWriteData(m_hDev, Address, pBuffer, (size_t*)&Length))
throw ACCESS_EXCEPTION("Failure writing device data");

};

virtual EAccessMode GetAccessMode() const
{

return RW;
};

private:
DEV_HANDLE m_hDev;

};

Acessing device registers

• The Read() and Write() methods do the
actual work of reading/writing device
registers. We just call the corresponding
library functions to get it done.

• The GetAccessMode() method is required
by GenAPI to get the port access mode.
We return RW (Read/Write)

Acessing device registers

• After declaring our port class, the next
step is to get an XML describing device
registers, so GenAPI can correctly
translate register name to addresses. This
is achieved by first calling DevGetURL() to
obtain the localtion of the file:

char url[2048];

size_t url_len = sizeof(url);

gc = GCGetURL(hDev, url, &url_len);

Accessing device registers

• Now, that we have the register description
file URL, we should read the file contents

• In our example, we assume that the
returned URL always has the file: prefix.
Other variants include http:, ftp: and local:.
So, we extract the file path:

char* file_name = url + (sizeof("file:")-1);

Accessing device registers

• Then, we open the file and read all its
contents as binary data:
FILE* pf = fopen(file_name, "rb");

size_t file_len = filelength(pf->_file);

char* xml = new char[file_len+1];

fread(xml, 1, file_len, pf);

fclose(pf);

• Since the XML file contains string data, we
terminate the data with a NULL char:

xml[file_len] = 0;

Acessing device registers

• Next, we create an instance of the GenAPI NodeMap
object and load the XML

CNodeMapRef node_map;
node_map._LoadXMLFromString(xml);

• Then, we create an instance of our port object and
connect the map to it

MyPort port(hDev);

node_map._Connect(&port, "CameraPort");

• Now, GenAPI is ready to be used for accessing our
device’s registers

Creating data stream

• Having the device open and register
access ready, we are now creating a data
stream required for image acquisition. This
is done through DevCreateDataStream():

DS_HANDLE hDS;

gc = DevCreateDataStream(hDev, 0, &hDS);

• Please note that only one data stream is
currently supported.

Allocating image buffers

• Image acquisition required allocating several buffers that
will be filled with incoming image data. Each buffer
should also be announced and queued to be ready for
use.

• An important point is calculating buffer size. The size
depends on 3 parameters: image width, image height
and pixel format. All these are device parameters that
should be read using GenAPI NodeMap object described
before:

CIntegerPtr pWidth = node_map._GetNode("Width");

CIntegerPtr pHeight = node_map._GetNode("Height");

CEnumerationPtr pPixelFormat = node_map._GetNode("PixelFormat");

Allocating image buffers

• After having discovered these 3
parameters, the required buffer size is
calculated as Width * Height * Factor,
where the factor depends on the pixel
format: for RGB8 the factor is 3, for
Mono8, the factor is 1, for Mono10 and
Mono12, the factor is 1.5 and for Mono16,
the factor is 2.

Allocating image buffers

• Having calculated the buffer size, we
should allocate a buffer and announce it to
the grabber using DSAnnounceBuffer():

PVOID pBuffer;

BUFFER_HANDLE hBuffer;

pBuffer = new BYTE[buf_size];

gc = DSAnnounceBuffer(hDS, pBuffer, buf_size, NULL,

&hBuffer);

Allocating image buffers

• Next, the announced buffer must be
queued by calling DSQueueBuffer():

gc = DSQueueBuffer(hDS, hBuffer);

• The number of buffers is specified by the
application and is usually user-
configurable.

Registering image arrival event

• Before image acquisition starts, we must register

an event, which will be fired each time an image

is acquired. This is done through

GCRegisterEvent():

HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

EVENT_HANDLE hEvt;

gc = GCRegisterEvent(hDS, EVENT_NEW_BUFFER, hEvent, &hEvt);

• The Windows event object is used for actual wait

by WaitForSingleObject, as we’ll see later

Starting acquisition

• Starting acquisition involves two steps:
– Telling the grabber to start acquisition
– Telling the device to start video transmission

• The first is done by calling DSStartAcquisition():

gc = DSStartAcquisition(hDS);

• The second is achieved by issuing a command to the
device:

CCommandPtr pStart = node_map._GetNode("AcquisitionStart");

pStart->Execute();

Grabbing images

• To grab incoming video images, we wait on the
Windows event object specified when we have
registered the event:

WaitForSingleObject(hEvent, 10000);

• Once the event is signalled, we retrieve the
handle of the buffer that contains the acquired
image:

BUFFER_HANDLE hBuf;

cb = sizeof(hBuf);

gc = GCGetEventData(hEvt, &hBuf, &cb);

Grabbing images

• After we have used the image, e.g. have it
drawn on the screen, we must requeue the
buffer for use by the grabber again:

gc = DSQueueBuffer(hDS, hBuf);

Stopping acquisition

• Similar to starting acquisition, stopping it involves two
steps:
– Telling the device to stop transmitting video

– Telling the grabber to stop acquisition

• The first is achieved by executing a device command:

CCommandPtr pStop = node_map._GetNode("AcquisitionStop");

pStop->Execute();

• The second is done by calling DSStopAcquisition():

gc = DSStopAcquisition(hDS);

Cleaning up

• After we are done with the device, we
perform the following steps:

– Close data stream:

gc = DSClose(hDS);

– Close device:

gc = DevClose(hDev);

– Close the library:

gc = TLClose(hTL);

